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This paper discusses automatic detection and exploitation of
embedded structure in Large-Scale Linear Programming (LP) models.
We report experiments with real-life LP and mized-integer (MIP)
models in which various methods are developed and tested as
integral modules of an optimization system of advanced design
[6]. We seek to understand the modeling implications of these
embedded structures as well as to exploit them during actual
optimization. The latter goal places heavy emphasis on effi-
ctent, as well as effective, identification techniques for
economic application to large models. Several (polynomially
complex) heuristic algorithms are presented from our work. In
addition, bounds are developed for the maximum row dimension of
the various factorizations. These bounds are useful for objec-
tively estimating the quality of heuristically derived
structures.

I. INTRODUCTION

ARutomatic detection and exploitation of special structure in
large-scale LP (or MIP) models has been the subject of a con-
tinuing research program conducted at EPe Naval Postgraduate
School and UCLA over the past decade. This paper draws from
various results in this effort, and refers (sparingly) to signi-
ficant work by other researchers. The references contain com-
plete descriptions of these results for the interested reader.
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370 GERALD G. BROWN AND WILLIAM G. WRIGHT

Qur scope is intentionally limited to automated methods of
sufficient efficiency to enable us to economically apply them to
real-world optimization problems. Thus, we consider only those
approaches showing greatest promise for immediate practical
application. Although the interpretations of embedded model
structure can lend profound insights in their own right, we are
equally interested in detecting‘errois in data preparation and
model generation ~-mathematically mundane issues of fundamental
importance to the practitioner.

The sheer size of contemporary large-scale LP models pre-
sents significant computational difficulties, even for otherwise
elementary factorizations. Implementation of effective struc—
tural analysis procedures is primarily a matter of exercising
large-scale data structures efficiently. As we shall see,
though, these practical considerations can give significant
theoretical guidance in the specification of efficiently
achievable classes of model transformations.

That detection of embedded special structure can be of
practical importance in actual model solution is undisputed. It
is widely known that explicit simplex operations can be
materially improved in efficiency by incorporation of basis
factorization methods (e.g., [6], [9], and references of [7]).
The details of such modifications of the simplex procedure are
not given here. However, the underlying themes of simplex fac-
torization are the substitution of logic for floating point
arithmetic, and separation of the apparent problem monolith into
more manageable components.

This paper deals exclusively with row factorizations. The
pervasive implied problem for row factorization is the identifi-
cation of the best embedded struc;;re from all those that may
lie at hand in any particular model. Conventional wisdom
differs as to the criterion for this discrimination among fac-

torizations of the same class. However, it is generally
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accepted that the row dimensionality of the factorization serves
as an excellent measure of effectiveness. In this sense,
embedded special structures fall naturally into a taxonomy
implied by the intrinsic complexity of the associated maximum
row identification problems.

We proceed with a discussion of several types of embedded
special structures detectable by efficient polynomially complex
algorithms. These structures are considered in increasing order
of maximum row identification complexity. We emphasize that
efficient polynomial algorithms are operationally defined here
as low-order polynomial in terms of intrinsic problem dimensions
(e.g., number of rows, columns, and non-zero elements), and not
in terms of the total volume of model information (e.g., total

number of bits in all coefficients, ad nauseam).
2. SIMPLE REDUCTIONS

LP models often exhibit simply detected structural charac-
teristics which permit a reduction in row dimensionality without
loss of model information. Several such reductions are possible
in evidently polynomial complexity. These include:

a) Void Rows

b) Void Columns

c) Singleton.Rows (simple upper bounds)

d) Singleton Columns

e) Fixed Variables

f) Rows that Fix Variables

g) Null Variables

h) Non-extremal Variables

i) Redundant Rows. N

Some of these reductions do not obviously decrease row
dimension. However, the reductions may be applied repeatedly to

the model, revealing at each iteration more rows which can be
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removed. Thus the cyclic application of reductions continues
until a minimal model results.

Experiments with some of these reductions have been reported
by Brearley, Mitra and Williams [5]. More extensive work at
large-scale has been done by Bradley, Brown and Graves [3] and
by Krabek [11].

Detection of all redundant LP rows requires complete solu-
tion of equivalent LP problems, and is thus equivalent in
complexity to LP. (We hesitate to say polynomial in the sense
of Khachian's recent result.) Thus, we restrict redundant row
detection to orthogonal redundancy, revealed by substitution of
bounds for problem variables. An efficient detection algorithm
results.

With real-life LP and MIP models, a remarkably large frac-—
tion of model rows can be removed by these simple techniques.
For some cases, models have been nearly solved this way.

We note that integrality conditions can be superimposed on
these simple reductions (e.g., tighten bounds on integer vari-
ables by truncation) to strengthen them. Nonlinear models also
benefit from these reductions, and from others not addressed in
this paper.

Table 1 contains the characteristics of several real-life
linear and mixed integer models. Table 2 displays the results
of simple reductions applied to these models [3]. Multiple
passes are made for each model until no more reductions are
possible. The times gyiven are for execution on an IBM 360/67

using FORTRAN H (Extended) without code optimization.

3. GENERALIZED UPPER BOUNDS
A

Rows for which each column has at most one non-zero coeffi-
cient (restricted to those rows) collectively form a generalized

upper bound (GUB) set. Usually, we additionally require that
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TABLE 1. Sample LP (MIP) Models

Golumtes Non-zero
Model Rows Total Integer Coefficients
TRUCK 220 4,752 4,752 30,074
FOAM 1,000 4,020 42 13,083
AIRLP 171 3,040 .0 6,023
ELEC 785 2,800 0 8,462
ODSAS 4,648 4,683 0 30,5620
LANG 1,236 1,425 0 25,028
FERT 606 9,024 0 40,484
COAL 171 3,753 0 7,506
CUPS 361 582 145 1,341
PAD 695 3,934 0 13,459
JCAP 2,487 3,849 560 9,510
PAPER 3,529 6,543 0 32,644
NETTING 90 17 114 375
PIES 663 2,923 0 13,288
GAS 799 5,636 0 27,474
PILOT 976 2,172 0 13,0567

the coefficients in these rows be capable of being rendered to
*1 by simple row or column scaling.

The problem of identifying a GUB set of maximum row dimen-
sion is NP-hard [7], making optimal GUB factorization algorithms
hopelessly inefficient for our purposes. Heuristics adapted
from work by Graves and by Senju and Toyoda (see [14], and
references of [5] and [7]) work very effectively and dependably
at large-scale to find maximal GUB sets.

Unfortunately, the problem of detqgmining just the size of
the maximum GUB set is also NP-hard. However, Brown and Thomen
[7] have developed bounds on the size of the maximum GUB set
which are sharp and easily computed. These bounds have been

used to show, in some cases, that maximum GUB sets have been



TABLE 2. Simple Reductions [3]

Fixed Singleton Doubleton Redundant CPU
Model Columns Columns Rows Equations Rows Passes Sec.
TRUCK 2 0 0 0 2 5.67
FOAM 2 0 36 0 2 3.30
AIRLP 20 0 0 0 2 1.78
ELEC 494 56 120 3 14 4 8.64
ODSAS 0 | 40 ' 0 3,609 40 3 31.00
LANG 106 220 68 9 56 20 61.45
FERT 406 0 0 0 13 4: i4.256
COAL @ 0 0 0 0 0 2. 2.12
CUPS 57 49 18 39 6] 4 1.90
PAD 183 30 16 0 0 3 3.26
JCAP 6 414 277 180 360 3 12.16
PAPER 145 190 90 359 45 5] 20.61
NETTING 8 1 29 7 17 4 0.81
PIES 183 50 16 0 0 3 3.32
GAS 501 60 31 0 30 4 10.08

PILOT 277 123 12 36 91 17.16

~
B~
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achieved via heuristic methods. In any case, the bounds provide
excellent objective measure of the quality of any GUB set,
regardless of the means of its derivation. Frequently, manual
GUB analysis will suffice for models with amenable structure.
The bounds are developed in terms of the number of distinct
conflicts present in the model. Two rows are in conflict if
they each have a non-zero element in a common column, making
them mutually exclusive in a GUB set. If sy is the number of
rows in conflict with row i , then the total problem conflict

count for a model with m rows is

1 1

= — < = -

c > z si 5 m(m-1) .
1.

A problem-independent bound on the size of the maximum GUB

set is [7]

u, = L.s+ /257 m(m-1) - 2c ,
where L|_ indicates truncation to an integer.

A tighter, problem-dependent bound is

m-I"-g, c< (m-y)y

L.S + V.25 + y(2m-y-1) - 2c, ¢ > (m-y)y ;
where
y = m?x S; -

Tighter upper bounds have been derived for the size of the
maximum GUB set, as well as lower bounds.

Table 3 contains the results of automatic GUB factorization
applied to the benchmark models [7]. Row eligibility is based
on the capability to scale the row to‘iontain only 0, *1
coefficients. GUB quality is the number of GUB rows found,
expressed as a percentage of the best known upper bound on maxi-

mum GUB row dimension (actual GUB quality may be better than



TABLE 3.

Model

TRUCK
FOAM
AIRLP
ELEC
ODSAS
LANG
RERT
COAL
CUPS
PAD
JCAP
PAPER
NETTING
PIES
GAS
PILOT

GUB Factorization [7]

Rows-GUB
Eligible
219
989
170
784
4,647
1,235
605
170
336
694
2,446
3,628
71
662
789
975

Row Conflicts

Count

10,438
8,186
2,983
6,167
5,220
46,424
16,455
3,753
744
4,416
16,578
35,047
46
4,116
22, 220

12,110

Density

43.
L.
20.

2

Do
(o>

E\D\}NH.L\DQNN

53%
67%
647%

<01%
a.
6.
9.
.13%
. 38%
. 84%
. 55%
. 82%
. 85%
. 88%
.16%
.66%

05%
09%
01%

GUB
Rows. Quality SEC
29 20. 28% 5.00
917 98.18% 1., 75
150 100.00% 0.65
309 62.80% 1.15
749 18.61% 7.12
342 35.15% 14.90
559 98.59%  6.73
111 91.74% 0.92
160 66.67% 0.21
188 41.87% 3. 34
529 29.19% 2.23
1,041 34.65% 5.77
36 78. 26% 0.05
172 40.76% 2.82
608 93.25% 3.79
255 33.73% 2.75
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this conservative estimate). The results were obtained using

FORTRAN H (Extended) with code optimization.
4. TIMPLICIT NETWORK ROWS

Implicit network rows are a set of rows for which each
column has at most two non-zero coefficients (restricted to
those rows) and for which columns with two non-zero coefficients
(in those rows) can be converted by simple row and column
scaling such that the non-zero coefficients have opposite sign.
Such rows in LP are commonly called netwofks with gains.

Pure network rows (NET) can be converted by simple row and
column scaling such that all non-zero coefficients (restricted
to those rows) have value *1 , and such that columns with two
non-zero coefficients (in those rows) have one +1 and one -1.
Such rows in LP are called pure networks (e.g., [4]).

Simple row and column scaling is restricted such that
application of each scale factor renders an entire row, or
column, to the desired sign (and unit magnitude for pure NET).

The problem of identifying a NET factorization of maximum
row dimension is NP-hard [15], making optimal NET identification
algorithms practically useless. The problem of determining just
the s12e of the maximum NET set is also NP-hard. Thus, heuris-
tic identification methods are mandated.

An extension of GUB heuristics can be used to achieve NET
factorizations. First, a GUB set is determined by methods men-
tioned in Section 3. Then, a second GUB set is found from an
eligible subset of remaining rows. The second GUB set is con-
ditioned such that its row members must possess non-zero coeffi-
cients of opposite sign in each columf for which the prior GUB
set has a non-zero coefficient.

This double-GUB (DGUB) factorization yields a bipartite NET

factorization. Thus, DGUB heuristically seeks the maximum
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embedded transportation or assignment row factorization. Pure
network equivalents derive ffom proper editing of eligible rows.

Generalizing on the theme of Senju and Toyoda [14], a more
general method has been developed by Brown and Wright [8] for
direct NET factorization of implicit network rows. Pure NET
rows can be identified with the same procedure by simple
‘screening of admissible candidate- rows. - -

This heuristic is designed to perform a network factoriza-
tion of a signed elementary matrix (0,*1 entries only). It is
a deletion heuristic which is feasibility seeking. The measure
of infeasibility at any point is a matrix penalty computed as
the sum of individual row penalties. The algorithm is two-
phased, one pass, and non-backtracking. The first phase yields
a feasible set of rows, while the second phase attempts to
improve the set by reincluding rows previously excluded. Each
iteration in Phase I either deletes a row or reflects it
(multiplies it by =1) and guarantees that the matrix penalty
will be reduced. Thus, the number of iterations in Phase I is
bounded by the initial value of the matrix penalty, which is

polynomially bounded.
Let A = [aij] be an m x n matrix with aij =0,x1VY i,3.

Problem: Find a matrix N = [nij] with (m-k) rows and n
columns which is derived from A by
1. Deleting k rows of A where k >0,
2. Multiplying zero or more rows of A by -1,
where N has the property that each column of N has at most
one +1 element and at most one -1 element. We wish to find
a "large" N in the sense of containing as many rows as

possible, i.e., minimize k . .
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Terminology and Notation:

1. E 4is the set of row indices for rows eligible for
inclusion in N and is called the eligible set.

2. C is the set of row indices for rows removed from E
in Phase I (Deletion). Some rows in C may be readmitted to

E in Phase II. C is called the candidate set.

379

3. The phase "reflect row i' of A" means to multiply each

element in row i' by -1, i.e., ai’j + —ai,j Y 5.

4. Other notation will be defined in the algorithm itself.

Algorithm

Phase I -Deletion of Infeasible Rows

Step 0: Initialization. Set E = {1,2,...,m}, C= ¢ .
For each column j of A compute the + penalty (K;) and
the - penalty (K.) as follows:

K;’ - ) 1]-1, K = ) 1]-12
i€E: aij >0 iEE: aij<0

These penalties represent the number of excess +1 and -1

elements, respectively, in column Jj which prevent the rows
whose indices remain in E from fotming a valid N matrix.
penalty value of -1 for K;(K;) indicates that the column

does not contain_a +1 (-1) element.

Step 1: Define row penalties. For every i € E, compute

a row penalty (pi) as follows:

This is simply the sum of + penalties for all columns in which
<

row i has a +1 plus the sum of - penalties for all columns

in which row i1 has a -1 .

Step 2: Define matrix penalty. Compute the penalty (h) for

the matrix by summing the row penalties as follows:
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h = 2 pi
i1€E
If h =0, then go to Step 7. Otherwise, go to Step 3.
Step 3: Row selection. Find the row i' ¢ E with the

greatest penalty, i.e.,

Find i' € E such that p., = ‘max P, -

ieE

(If there is a tie, choose 1i' from among the tied values.)

Compute the reflected row penalty §i' for i' as follows:

- - +
Py, = ) (k) +1) + ) () +1)

j: a,,.>0 j: oa,,. <
J: 8y A By S
This wouldbe the row penalty for row i' if it were to bereflected.

Step 4: Delete, or reflect row.

Case i) P;r > Py, - Let E«E-{i'}, c<c uU{i'} .
Go to Step 5.

Case ii) éi' < Piv - Reflect row i' . Go to'Step 6.

Step 5: Reduce column penalties as follows:

For all j such that ai'j >0, K; < K; - 1 .

For all j such that a.,,. <0, KI «K, - 1.
1] J J

Go to Step 1.

Step 6: Change column penalties as follows:
Using the ai'j values af%er reflection of row i',
: +
For all j such that ai'j >0, K; + Kj + 1 and
K, +K, - 1.
J J + 4
For all Jj such that ai'j <0, Kj < Kj - 1 and
K, + K, +1.
J J
Go to Step 1. 5

Phase II -Reinclusion of Rows from C

Step 7: Eliminate conflicting rows. The rows with indices
in E , some possibly reflected from the original A matrix,

form a valid N matrix. However, some of the rows removed from
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E and placed in C may now be reincluded in E if they do not
make h > 0 . Remove from C (and discard) all row indices for
rows which, if reincluded in E in present or reflected form,

would make h > 0 . I.e., remove i from C if:

a) 3 j, such that a.. > 0 and KT =0
X ljl jl
or a;. < 0 and. K; =0 .
and 4 B
b) 3 j, such that a,, >0 and K. =0
2 132 32
+
or aij2 < 0 and Kj =0 .

2
If ¢ =¢, STOP, otherwise go to Step 8.

Step 8: Select row for reinclusion. At this point a row
from C may be reincluded in E . There are several possible
schemes for selecting the row. After the row is reincluded, the

column penalties are adjusted. Then go to Step 7.

Modifications can be made to Step 0 to allow for
1) Matrices including non- O ,*1 entries and/or 2) Pre-
specified network rows. The modifications are:
1. E={i] 3,5 = 0,1 for all i} .
2. Let P={i| row i is prespecified} .
E<«<E-P
After computation of K; and K; , find for all j

if § i € P such that a..

+ +
1l then K. <« K. + 1,
1] J J

s if 3 i € P such that aij

At termination of the algorithm, the rows in N are given by

Il

-1 then K, + K, + 1 .
3 3

EUP .

One easily obtained upper bound of the maximum row dimen-

sion of the network factorization is:

U, = m - max (KT +K.) .
1 3 o3
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This bound is easily computed and evidently sharp. It can
be used to objectively evaluate the quality of a heuristically
derived network factorization. The bound may also be used to
preemptively terminate factorization effort.

Other bounds may be similarly derived.

Table 4 displays the results of DGUB and NET factorizations
of the benchmark models. Row eligibility is determined by the
capability to scale each row, by row scaling alone, to contain
only 0, *1 entries. The NET quality is the number of NET
rows found, expressed as a percentage of the upper bound on
maximum NET row dimension given above (actual NET quality may be

considerably better than this estimate).
5. HIDDEN NETWORK ROWS

Hidden network rows' are a set of rows which satisfy NET row
restrictions after linear transformation of the model. That is,
realization of these (LNET) rows may require a genefal linear
transformation of the original model.

The discrimination between implicit and hidden network rows
is not (necessarily) in their use, but rather in their detec-
tion. The transformation group associated with implicit network
rows involves only permutations and simple scaling of individual
rows and columns. The hidden network rows require a completely
general linear transformation and partial ordering. Thus,
identification of hidden networks requires significant computa-
tion just to identify eligible rows, since any given row may
conflict with subsets of its cohorts after transformation.

This problem has been solved for complete hidden network
factorization, where all rows are $hown to be LNET or the algo-

rithm fails. Bixby and Cunningham [2] and Muslem [13] have

YWe have coopted the term hidden from Biwby [11, but his
definition may not superficially appear to be equivalent.



TABLE 4.

Model

TRUCK
FOAM
AIRLP
ELEC
0DSAS
LANG
FERT

& COAL
CUPS
PAD
JCAP
PAPER
NETTING
PIES
GAS
PILOT

NET Factorization [8]

DGUB
Rows NET

Eligible Rows SEC

219 47  8.40

966 951  1.89

150 150  0.41

322 272 0.99

410 317  3.39

850 585  3.74

585 572  6.03

111 111 0.50

300 251  0.29

174 160  0.58

1,811 874  2.50

2, 324 1,484  7.24

59 54  0.07

142 128  0.56

752 682  5.00

109 09 0.92

NET
_Rovs  Quality  _SEC_
46 33.58% ' 19.83
951 99. 58% 1.16
150 100.00% 0.35
286 93.46% 2.07
286 77.51%  14.55
661 87.20%  14.82
572 100.00% 6.15
111 100.00% 0.43
295 99. 33% 0.14
160 97. 56% 0.59
917 83.97%  44.07
1,627 78.52%  94.16
54 94. 74% 0.08
128 96.97% 0.59
668 94.08% 9.71
109 100. 00% 0.36
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given polynomially complex methods for complete LNET conversion.
(The complete GUB problem is polynomial as well.)

Strategically, the complete hidden LNET factorization
requires two steps:

Detection: necessary conditions for existence of a complete

LNET factorization must be established, and

Sealing: a linear transformation to achieve the NET

structure must be determined, if one exists.

Cunningham and Bixby attempt detection, followed by scaling.
Musalem tries scaling, then detection. This is a crucial dif-
ference between methods, since problems which cannot be com-
pletely NET factorized may fail in either step.

Briefly, Cunningham and Bixby detect by showing that the
incidence matrix of the model rows can be converted to a graphic
matroid. They employ a method by Tutté (see references of [2]).
Given success, the graphic record of the detection is used to
attempt to scale the model to NET, or to show that no such
scaling exists. '

Musalem scales the model to a *1 matrix, and then uses a
method by Iri (see references of [13]) to build a tree, edge by
edge, which reveals the partial ordering coincident with com-
plete hidden INET factorization.

Both methods are polynomially complex. However, complete
INET factorization is relatively expensive by either method in
that quite a large amoung of real arithmetic and logic is
required. Underlying data structures have not been suggested
for either method. Both methods fail if complete LNET factor-
ization is impossible, and neither leaves the investigator with
much information useful in salvaging a partial INET factoriza-
tion. We conjecture that risk of mreemptive failure narrowly
favors the Musalem approach, since he defers the relatively

involved detection step.
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Locating a hidden LNET factorization of maximal row dimen-
sion has been suggested by Bixby [1] and by Musalem [13], but no
concrete method is given and no computational testing is
reported. Evidently, the maximum LNET problem is NP-hard, and
its maximal relaxation remains unsolved in the practical sense

of this report.
6. CONCLUSION

The techniques reported here have been used with great
success on a wide variety of large LP (MIP) models. The context
of this research is certainly atypical in that the models which
we work with are often sent to us for analysis and solution pre-
cisely because they have already failed elsewhere. In these
cases, our motives are to quickly diagnose suspected trouble
before optimization, prescribe remedies, and perform the actual
optimization reliably and efficiently.

This has undoubtedly biased our view of structural detection
methods. Practical considerations arising from turnaround dead-
lines and the specific advantages of our own optimization system
[6]% have colored our judgment. Many provocative suggestions
for further research have not been pursued, either due to lack
of opportunity, to poor intuition, or to sheer economics.
Whether or not by equivalent prejudice, Krabek [11l] reports some
similar methods for simple reductions applied to large MIP's.

A great deal of insight has been gained from these experi-
ments. The cost of factorization is truly insignificant

’The x-system (XS) differs in many ways from classical
large-scale mathematical programming systems; it simultaneously
supports simple and generalized upper®ounds, general basis
factorization, MIP, nonlinear, and decomposition features. In
addition, the fundamental LP algorithm has been enhanced to
intrinsically incorporate elastic range restrictions. XS is

particularly suited for solution in limited time of large models
with complicating features.
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relative to the information gnd (primarily) solution efficiency
gained thereby. Revelations have ranged from outright rejection
of absurd formulations to subtle inferences on the inter-
personal conflicts of model proponents. Very few models fail to
reveal some totally unsuspected structural curiosity. Indeed,
it is often some minor aberration that proves most revealing.
Sometimes, the combined effects of several niinor features collec-
tively contribute to a discovery of significant model attributes.

Our general operational guidelines has been to avoid heavy
computational investment in factorization. Rather, highly
efficient methods are used repeatedly on variations of each
model. Manual and Zntuitive analysis of these results usually
reveal much more than could be reasonably expected from any
totally automated method applied to problems of exponential
complexity. Interactive analysis of large-scale models is
uncompromisingly challenging in a technical sense and equally
rewarding. '

Accordingly, we have not yet implemented maximal hidden net-
work heuristics, or block—-angular clustering methods. In the
former case, we find intrinsic NET factorization to unerringly
reveal more general network forms. Also, reformulation to a NET
factorization commonly requires more than a linear transforma-
tion; variables and constraints must frequently be augmented to
achieve the desired arc and node interpretation.

In the case of block-angular and attendant structures, we
require a great deal more information than row and column index
subséts and aggregate relations to develop an effective and
economically sensible mathematical decomposition scheme;
further; even for unfamiliar models such structure is usually
apparent in those cases that invitg:decomposition.

For a more circumspect and less mechanical review of struc-
tural interpretation for LP models, see Greenberg [10]. From
the standpoint of his paper, the techniques reported here are

simply monadic functions of analysis.
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Large factorizations are routinely found as intrinsic fea-
tures in real-life models. Ho&ever, we feel that it is an
abominable practice to proselytize in favor of some particular
model structure at the expense of model realism or common sense.

For instance, network models have recently received unpre-
cedented attention in the literature. The implication has often
been that since networks are usually found-in models, networks
should be used as the exclusive model. This is, of course,
patent nonsense, smacking of a solution in search of a problem.
An analyst should view factorizations as specializations of
models, rather than forcing models to fit certain popular fac-

torizations [4].
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